Extracting flow features via supervised streamline segmentation
نویسندگان
چکیده
Effective flow feature extraction enables users to explore complex flow fields by reducing visual clutter. Existing methods usually use streamline segmentation as a preprocessing step for feature extraction. In our work, features are directly extracted as a result of streamline segmentation. In order to achieve this, we first ask users to specify desired features by manually segmenting a few streamlines from a flow field. Users only need to pick the segmentation points (i.e., positive examples) along a streamline, remaining points will be used as negative examples. Next we compute multiscale features for each positive/negative example and feed them into a binary support vector machine (SVM) trainer. The trained classifier is then used to segment all the streamlines in a flow field. Finally, the segments are clustered based on their shape similarities. Our experiment shows that very good segmentation results can be obtained with only a small number of streamlines to be segmented by users for each data set. We also propose a novel heuristic based on the minimum bounding ellipsoid volume to help determine where to segment a streamline.
منابع مشابه
مقایسه روشهای مختلف یادگیری ماشین در خلاصهسازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت
In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...
متن کاملFeature Extraction for DW-MRI Visualization: The State of the Art and Beyond
By measuring the anisotropic self-diffusion rates of water, Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) provides a unique noninvasive probe of fibrous tissue. In particular, it has been explored widely for imaging nerve fiber tracts in the human brain. Geometric features provide a quick visual overview of the complex datasets that arise from DW-MRI. At the same time, they build a bri...
متن کاملWhite Matter Tract Segmentation as Multiple Linear Assignment Problems
Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways of axons within the white matter of the brain as a set of polylines, called streamlines. The set of streamlines of the whole brain is called the tractogram. Organizing tractograms into anatomically meaningful structures, called tracts, is known as the tract segmentation problem, with important applications to ne...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملExploring Flow Fields Using Fractal Analysis of Field Lines
We present a novel technique for analyzing the geometry of streamlines representing large scale flow fields produced in scientific simulations. We introduce the box counting ratio, a metric related to the Kolmogorov capacity or box counting dimension, for quantifying geometric complexity of streamlines (or streamline segments). We utilize this metric to drive a visual analytic framework for ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Graphics
دوره 52 شماره
صفحات -
تاریخ انتشار 2015